

UNIVERSITÄTSSPITAL BERN HÔPITAL UNIVERSITAIRE DE BERNE

Improvement of Relative Survival in Elderly Patients with Acute Myeloid Leukemia Emerging from Population-Based Cancer Registries in Switzerland from 2001-2013

Annatina Schnegg-Kaufmann*, Anita Feller*, Helen Baldomero, Alicia Rovo, Markus G. Manz, Michael Gregor, Anna Efthymiou, Mario Bargetzi, Urs Hess, Olivier Spertini, Yves Chalandon, Jakob R. Passweg, Georg Stuessi, Volker Arndt, Nicolas Bonadies, and the NICER Working Group.

*equal contribution

Introduction

AML:

- 1.5-5.2 new cases per 100,000 person-years
- peak incidence at the age of 75-80 yrs
- Younger patients: Improving survival over time
- Elderly patients (>70yrs): Dismal prognosis without relevant changes over time

Projected relative 5-year survival in AML according to age and time period (Juliusson, BLOOD, 26 APRIL 2012)

Percival ME, Cancer 2015;121:2004-12.
Medeiros BC, Annals of hematology 2015;94:1127-38.
Juliusson G, Blood 2012;119:3890-9.

4) Dinmohamed AG, Leukemia 2016;30:24-31.
5) Polednak AP, J Registry Manag 2014;41:77-84.
6) McNally RJ, Hematol Oncol 1997;15:173-89.

Registration (NICER)

Methods

ICD-O	AML	ICD-O-3	ICD-0-3.1	AML			
Code*	Subtype	(2000)	(2011)	risk-class**			
AML with recu	irrent genetic abnormalities						
9896	AML with t(8;21)(q22;q22); RUNX1-RUNX1T1	Х	Х	favorable			
9871	AML with inv(16)(p13.1q22)/t(16;16)(p13.1;q22); CBFB-MYH11	Х	Х	favorable			
9866	APL with t(15;17)(g22;g12); PML-RARA	Х	Х	favorable			
9897	AML with t(9;11)(p22;q23); MLLT3-MLL	Х	Х	adverse			
9865	AML with t(6;9)(p23;q34); DEK-NUP214		Х	adverse			
9869	AML with inv(3)(q21q26.2)/t(3;3)(q21;q26.2); RPN1-EVI1		Х	adverse			
9911	AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1		Х	adverse			
9895	AML with MDS-related changes	Х	Х	adverse			
9920/ 9987	Therapy-related myeloid neoplasms	Х	Х	adverse			
AML, NOS							
9872	AML with minimal differentiation (FAB M0)	Х	Х	intermediate			
9873	AML without maturation (FAB M1)	Х	Х	intermediate			
9874	AML with maturation (FAB M2)	Х	Х	Intermediate			
9867	Acute myelomonocytic leukaemia (FAB M4)	Х	Х	Intermediate			
9891	Acute monoblastic/monocytic leukaemia (FAB M5)	Х	Х	Intermediate			
9840	Acute erythroid leukaemia (FAB M6)	Х	Х	adverse			
9910	Acute megakaryoblastic leukaemia (FAB M7)	Х	Х	adverse			
9870	Acute basophilic leukaemia	Х	Х	adverse			
9931	Acute panmyelosis with myelofibrosis	Х	Х	adverse			
9930	Myeloid sarcoma	Х	Х	adverse			
AML, non-classifiable							
9860	Myeloid leukaemia (NOT classified according to WHO 2008)	Х	Х	non-classifiable			
9861	Acute myeloid leukaemia (NOT classified according to WHO 2008)	Х	Х	non-classifiable			

Characteristics of AML cases reported to Swiss cancer registries for 2001–2007 and 2008–2013

	2001-2007		2008-2013		
	n	%	n	%	
overall	1,151	100	1,200	100	
age and sex					
females	531	46.1	585	48.8	
males	620	53.9	615	51.3	

- Median age: 67-68 (Range 0-96y)
- Male/female ratio : 1.1-1.2

Number of new cases and Incidence Rates

Distribution of Risk Classes according to Age Class

Relative Survival stratified for Risk Class

*Two-sided p-values for relative survival for the two time periods calculated according to Brown et al, Biometrics 1983;39:941-8.

Relative Survival stratified for Age Class

*Two-sided p-values for relative survival for the two time periods calculated according to Brown et al, Biometrics 1983;39:941-8.

Transplanted AML patients age >65 years

	2001-2007		2008-2013		total	
	n	%	n	%	n	%
AML transplanted all ages*	272	43.5	354	56.5	626	100
AML transplanted age ≥65 yrs (range 65-70 yrs)*	6	15.8	32	84.2	38	100
observed AML cases 65-74 yrs**	263	46.5	302	53.5	565	100
estimated AML cases 65-74 yrs (to all of Switzerland)**	444	49.3	456	50.7	900	100

* data from the registry of the Swiss Blood Stem Cell Transplant Group (SBST)

** data from CCRs for AML patients aged 65-74 yrs and estimated AML cases extrapolated based on the coverage of 59.3%/66.3% for 2001-2007/2008-2013, respectively

HOVON/SAKK clinical trial activities for elderly AML patients in Switzerland

Trial name	Age	Regimen	egimen Duration		n ₁	
HOVON 43/ SAKK 30/01 ¹⁾	≥61 yrs, fit	Ara-C, Dauno	03/2002-06/2006	101	110	
HOVON 81	>60 yrs, fit	Dauno,	08/2007-12/2007	9	110	
		Bevacizumab	01/2008-08/2009	32		
SAKK 30/07 ²⁾	≥65 yrs or unfit	Azacytidin	09/2008-01/2010	45	133	
	≥66 yrs, fit	Dauno +/- Lenalidomide	01/2012-12/2013	56		
HOVON 105			01/2014-07/2014	9		
HOVON 103	≥66 yrs, fit	Dauno +/- Tos	03/2015-06/2016	33		
HOVON 103	≥66 yrs, fit	Dauno +/- Sel	06/2017	ongoing		
HOVON 135	≥66 yrs, unfit	Dauno +/- Ibr	10/2016	ongoing		

n₀: Overall included study patients

n₁: Patients included in the two observed periods 2001-2007 and 2008-2013, respectively

1) Lowenberg B et al, The New England journal of medicine 2009;361:1235-48.

2) Passweg JR, et al, Leukemia & lymphoma 2014;55:87-91.

Take-home messages

- Rise of annual AML cases is caused by demographic ageing and not by an increase of age-specific risks.
- AML classification improves over time but diagnostics and reporting are less accurate with increasing age.
- Improvement of relative survival for elderly AML patients, caused by general changes in management.
- Therapeutic nihilism in elderly AML patients is not justifiable.

